
Hans-Petter Halvorsen

https://www.halvorsen.blog

Simulation and Control
in Python

• Simulation of Model
– Example 1 – Basic Simulations
– Example 2 – Define and use a Function
– Example 3 – Function in Separate File

• Control System
– Example 4 – Create Basic Control System
– Example 5 – Define a Class
– Example 6 – “Real-Time” Plotting
– Example 7 – Run program “forever” by using “While True”
– Example 8 – Stopping Program by hitting Ctrl-C
– Example 9 – Change Reference/Setpoint during execution

• Summary

Contents

Hans-Petter Halvorsen

https://www.halvorsen.blog

Simulation of Model

Table of Contents

Model

Where 𝑎 = − !
" and 𝑏 = #

"

𝑦!"# = (1 + 𝑇$𝑎)𝑦!+ 𝑇$𝑏𝑢!
In the Python code we can, e.g., use the following values in the Simulations:

𝐾 = 3
𝑇 = 4

�̇� = 𝑎𝑦 + 𝑏𝑢
Differential equation (1.order dynamic system):

Discrete version that we can use in our Simulations:

Example 1
import numpy as np
import matplotlib.pyplot as plt
Model Parameters
K = 3
T = 4
a = -1/T
b = K/T

#Simulation Parameters
yk = 0
uk = 1
Tstop = 30
Ts = 1
N = int(Tstop/Ts) # Simulation length

data = []
data.append(yk)

Simulation
for k in range(N):

#Model Implementation
yk1 = (1 + a*Ts) * yk + Ts*b*uk

yk = yk1
data.append(yk1)

Plot the Simulation Results
t = np.arange(0,Tstop+Ts,Ts)
plt.plot(t,data,'-*')
plt.title('1.order Dynamic System')
plt.xlabel('t [s]')
plt.ylabel('y(t)')
plt.grid()

Python Functions

def add(x,y):
z = x + y
return z

The Return value

The Name of the Function
Input Arguments (information that
are passed into a function)

Define Function
def add(x,y):

return x + y

Using the Function:
x = 2
y = 5

z = add(x,y)

print(z)

Variables and Functions
• Variables that are created outside of a function are known as

global variables.
• Global variables can be used by everyone, both inside of

functions and outside.
• Normally, when you create a variable inside a function, that

variable is local, and can only be used inside that function.
• If you create a variable with the same name inside a

function, this variable will be local, and can only be used
inside the function. The global variable with the same name
will remain as it was, global and with the original value.

Global vs Local Variables
x = 3

def myfunc():
x = 4
print(x)

myfunc()

print(x)

Result in Console window:
4
3

If you create a variable with the same name inside a
function, this variable will be local, and can only be used
inside the function. The global variable with the same name
will remain as it was, global and with the original value.

Example 2
import numpy as np
import matplotlib.pyplot as plt

#Simulation Parameters
yk = 0
uk = 1
Tstop = 30
Ts = 1
N = int(Tstop/Ts) # Simulation length

data = []
data.append(yk)

def BasicModel(yk):
Model Parameters
K = 3
T = 4
a = -1/T
b = K/T

#Model Implementation
yk1 = (1 + a*Ts) * yk + Ts*b*uk

return yk1

Simulation
for k in range(N):

yk1 = BasicModel(yk)
yk = yk1
data.append(yk1)

Plot the Simulation Results
t = np.arange(0,Tstop+Ts,Ts)

plt.plot(t,data,'-*')
plt.title('1.order Dynamic System')
plt.xlabel('t [s]')
plt.ylabel('y(t)')
plt.grid()

In Example 2, the Model has
been put into a Function

Python Functions in a Separate File
• Although you can mix functions and code in one file, it is much

better to create the functions in separate .py files
• In that way you can easily reuse the function in different Python

scripts

We start by creating a separate
Python File, e.g., “myfunctions.py“ for
the function:

def average(x,y):

return (x + y)/2

myfunctions.py:

Next, we create a new Python File (e.g., testaverage.py)
where we use the function we created:1

2

from myfunctions import average

a = 2
b = 3

c = average(a,b)

print(c)

Example 3

def BasicModel(Ts, yk, uk):
Model Parameters
K = 3
T = 4
a = -1/T
b = K/T

#Model Implementation
yk1 = (1 + a*Ts) * yk + Ts*b*uk

return yk1

import numpy as np
import matplotlib.pyplot as plt
import model

#Simulation Parameters
yk = 0
uk = 1
Tstop = 30
Ts = 1
N = int(Tstop/Ts) # Simulation length

data = []
data.append(yk)

Simulation
for k in range(N):

yk1 = model.BasicModel(Ts, yk, uk)
yk = yk1
data.append(yk1)

Plot the Simulation Results
t = np.arange(0,Tstop+Ts,Ts)

plt.plot(t,data,'-*')
plt.title('1.order Dynamic System')
plt.xlabel('t [s]')
plt.ylabel('y(t)')
plt.grid()

model.py

In Example 3, the Model has
been put into a Function that is
put into a separate Python File

Hans-Petter Halvorsen

https://www.halvorsen.blog

Control System

Table of Contents

Control System

Controller Model
𝑟 𝑢𝑒

−
Reference
Value

Control
Signal𝑦

𝑦

The purpose with a Control System is to Control a Dynamic System, e.g., an industrial
process, an airplane, a self-driven car, etc. (a Control System is “everywhere“).

PI Controller

𝑢! = 𝑢!%# + 𝐾& 𝑒! − 𝑒!%# +
𝐾&
𝑇'
𝑇$𝑒!

𝑒! = 𝑟! − 𝑦!
Discrete PI Controller that we can use in our Simulations:

𝑢 𝑡 = 𝐾!𝑒 +
𝐾!
𝑇"
)
#

$
𝑒𝑑𝜏

Example 4
def Model(Ts, yk, uk):

Model Parameters
K = 3
T = 4
a = -1/T
b = K/T

#Model Implementation
yk1 = (1 + a*Ts) * yk + Ts*b*uk

return yk1

def Controller(Ts, y, r, u_prev, e_prev):
Kp = 0.5
Ti = 5

e = r - y
u = u_prev + Kp*(e - e_prev) + (Kp/Ti)*Ts*e

return u, e

import numpy as np
import matplotlib.pyplot as plt
import controlsystem as cs

#Simulation Parameters
yk = 0
uk = 1
Tstop = 30
Ts = 1
N = int(Tstop/Ts) # Simulation length
data = []
data.append(yk)

Controller Initialization
r = 1
u_prev = 0
e_prev = 0

Simulation
for k in range(N):

u, e = cs.Controller(Ts, yk, r, u_prev, e_prev)
u_prev = u
e_prev = e

yk1 = cs.Model(Ts, yk, u)
yk = yk1
data.append(yk1)

Plot the Simulation Results
t = np.arange(0,Tstop+Ts,Ts)

plt.plot(t,data,'-*')
plt.title('Control of 1.order Dynamic System')
plt.xlabel('t [s]')
plt.ylabel('y(t)')
plt.grid()

controlsystem.py In Example 4 we Control the
Model using a PI Controller.
The Model ad the Controller
have been put into separate
Functions that is put into a
separate Python File

Python Classes
Class Example: class Car:

model = ""
color = ""

car = Car()

car.model = "Volvo"
car.color = "Blue"

print(car.color + " " + car.model)

car.model = "Ford"
car.color = "Green"

print(car.color + " " + car.model)

Define the Class

Use the Class

We start using the
Class by creating an
Object of that Class

Set Properties

The __init__() Function
In Python all classes have a built-in function called __init__(), which is always executed
when the class is being initiated.
In many other OOP languages we call this the Constructor.

class Car:
def __init__(self, model, color):
self.model = model
self.color = color

car1 = Car("Ford", "Green")
print(car1.color + " " + car1.model)

car2 = Car("Volvo", "Blue")
print(car2.color + " " + car2.model)

We will create a simple example
where we use the __init__() function
to illustrate the principle:

The self parameter is a reference
to the current instance of the class
and is used to access variables that
belongs to the class.

Python Classes
• Its normal to use the term "Method" for Functions that

are defined within a Class.
• You declare class methods like normal functions with

the exception that the first argument to each method is
self.

• To create instances of a class, you call the class using
class name and pass in whatever arguments its
__init__() method accepts, e.g., car1 = Car("Tesla",
"Red")

Example 5
class Automation:

def __init__(self, Ts, Kp, Ti):
self.Ts = Ts
self.Kp = Kp
self.Ti = Ti

def Model(self, yk, uk):
Model Parameters
K = 3
T = 4
a = -1/T
b = K/T

Ts = self.Ts

#Model Implementation
yk1 = (1 + a*Ts) * yk + Ts*b*uk

return yk1

def Controller(self, y, r, u_prev, e_prev):
Kp = self.Kp
Ti = self.Ti
Ts = self.Ts

e = r - y
u = u_prev + Kp*(e - e_prev) + (Kp/Ti)*Ts*e

return u, e

import numpy as np
import matplotlib.pyplot as plt
from Automation import Automation

#Simulation Parameters
yk = 0
uk = 1
Tstop = 30
Ts = 1
N = int(Tstop/Ts) # Simulation length
data = []
data.append(yk)

Controller Initialization
r = 1
Kp = 0.5
Ti = 5
u_prev = 0
e_prev = 0
control = Automation(Ts, Kp, Ti)

Simulation
for k in range(N):

u, e = control.Controller(yk, r, u_prev, e_prev)
u_prev = u
e_prev = e

yk1 = control.Model(yk, u)
yk = yk1
data.append(yk1)

Plot the Simulation Results
t = np.arange(0,Tstop+Ts,Ts)

plt.plot(t,data,'-*')
plt.title('Control of 1.order Dynamic System')
plt.xlabel('t [s]')
plt.ylabel('y(t)')
plt.grid()

Automation.py In Example 5 we have
created a separate
Python Class for the
Model and the Controller

• We started to Simulate a basic Model in Python
• Then we improved the Python Code by using Functions and Classes

in Python
• We Implemented also a basic Control System
• Next step would be to create a “real-time control system” where

(not all will not be shown in this tutorial):
– We update the Plot in every iteration
– It is possible to change Reference/Setpoint value during execution
– The Control System runs “forever” until we want to stop it by

clicking a button, hitting a key or something
=> These things are more complicated in Python compared to, e.g.,
LabVIEW or WinForm App in Visual Studio/C#, but it is possible.

Next Steps

Real-Time Plotting
Basic Real-Time Plotting:
We will perform a very basic ”Real-Time” Plotting by putting the plot commands inside
the For Loop:
for k in range(N):

..
plt.plot(t, yk1, '-o', markersize=1, color='blue’)
plt.show()
plt.pause(Ts)

Advanced Real-Time Plotting:
• For more advanced features, we can use the animation module in the matplotlib

library (matplotlib.animation)
• For more information and examples, see the textbook “Python for Science
• and Engineering”, chapter 36: “Real-Time Simulations”
• https://www.halvorsen.blog/documents/programming/python

https://www.halvorsen.blog/documents/programming/python

Example 6

Simulation
for k in range(N):

t = t + Ts
u, e = control.Controller(yk, r, u_prev, e_prev)
u_prev = u
e_prev = e

yk1 = control.Model(yk, u)
yk = yk1
data.append(yk1)

Plot the Simulation Results
plt.figure(1)
plt.plot(t, yk1, '-o', markersize=1, color='blue')
plt.show()
plt.pause(Ts)

In Example 6 we have placed the plotting
inside the For Loop for “Real-Time Plotting”

import matplotlib.pyplot as plt
from Automation import Automation

#Simulation Parameters
t = 0
yk = 0
uk = 1
Tstop = 30
Ts = 1
N = int(Tstop/Ts) # Simulation length
data = []
data.append(yk)

Controller Initialization
r = 1
Kp = 0.5
Ti = 5
u_prev = 0
e_prev = 0
control = Automation(Ts, Kp, Ti)

Initialize Plot
plt.figure(1)
plt.title('Control of 1.order Dynamic System')
plt.xlabel('t [s]')
plt.ylabel('y(t)')
plt.grid()

How to Kill a While Loop with a Keystroke?

• Next, we will use “while True” instead of a For
Loop to create a Program that goes “Forever”

• Some Examples will be provided

Example 7

Simulation
while True:

t = t + Ts
u, e = control.Controller(yk, r, u_prev, e_prev)
u_prev = u
e_prev = e

yk1 = control.Model(yk, u)
yk = yk1
data.append(yk1)

Plot the Simulation Results
plt.figure(1)
plt.plot(t,yk1, '-o', markersize=1, color='blue')
plt.show()
plt.pause(Ts)

print("Program is Finished")

In Example 7 we use “while True” to create a
Program that goes “Forever”

import matplotlib.pyplot as plt
from Automation import Automation

#Simulation Parameters
t = 0
yk = 0
uk = 1
Tstop = 30
Ts = 1
N = int(Tstop/Ts) # Simulation length
data = []
data.append(yk)

Controller Initialization
r = 1
Kp = 0.5
Ti = 5
u_prev = 0
e_prev = 0
control = Automation(Ts, Kp, Ti)

Initialize Plot
plt.figure(1)
plt.title('Control of 1.order Dynamic System')
plt.xlabel('t [s]')
plt.ylabel('y(t)')
plt.grid()

Problem with Example 7
We can stop this program (that’s runs “forever”) by use Ctrl-C or
the hit the “stop the current command” (“red square”) in Spyder.
The problem with this that the program stops immediately.
Typically, we want the program to save the lates data to a file,
close a connection to the database, etc.

In this case the final print("Program is Finished") is not executed

Example 8

Simulation
try:

while True:
t = t + Ts
u, e = control.Controller(yk, r, u_prev, e_prev)
u_prev = u
e_prev = e

yk1 = control.Model(yk, u)
yk = yk1
data.append(yk1)

Plot the Simulation Results
plt.figure(1)
plt.plot(t,yk1, '-o', markersize=1, color='blue')
plt.show()
plt.pause(Ts)

except KeyboardInterrupt:
pass

print("Program is Finished")

In Example 8 we use “while True” in
combination with “try .. except”

import matplotlib.pyplot as plt
from Automation import Automation

print("Press Ctrl-C to Stop the Program")

#Simulation Parameters
t = 0
yk = 0
uk = 1
Tstop = 30
Ts = 1
N = int(Tstop/Ts) # Simulation length
data = []
data.append(yk)

Controller Initialization
r = 1
Kp = 0.5
Ti = 5
u_prev = 0
e_prev = 0
control = Automation(Ts, Kp, Ti)

Initialize Plot
plt.figure(1)
plt.title('Control of 1.order Dynamic System')
plt.xlabel('t [s]')
plt.ylabel('y(t)')
plt.grid()

Change Values during Execution

• Typically, we may want to change, e.g., Kp or Ti during
execution

• At least it may be useful to change the Reference Value
or the Setpoint during execution

• This can be done by reading updated values for these
parameters from a database or similar (e.g., OPC, MQTT,
etc.) inside the For/While Loop
– This will not be part of this tutorial

• We will just change the Reference/Setpoint after a
preset time, e.g., t=30s

Example 9
Simulation
try:

while True:
t = t + Ts
if (t==30):

r = 2
u, e = control.Controller(yk, r, u_prev, e_prev)
u_prev = u
e_prev = e

yk1 = control.Model(yk, u)
yk = yk1
data.append(yk1)

Plot the Simulation Results
plt.figure(1)
plt.plot(t,yk1, '-o', markersize=1, color='blue')
plt.show()
plt.pause(Ts)

except KeyboardInterrupt:
pass

print("Program is Finished")

In Example 9 we change the
Reference value after a specific time

import matplotlib.pyplot as plt
from Automation import Automation

print("Press Ctrl-C to Stop the Program")

#Simulation Parameters
t = 0
yk = 0
uk = 1
Tstop = 30
Ts = 1
N = int(Tstop/Ts) # Simulation length
data = []
data.append(yk)

Controller Initialization
r = 1
Kp = 0.5
Ti = 5
u_prev = 0
e_prev = 0
control = Automation(Ts, Kp, Ti)

Initialize Plot
plt.figure(1)
plt.title('Control of 1.order Dynamic System')
plt.xlabel('t [s]')
plt.ylabel('y(t)')
plt.grid()

Changing Reference Value

Change in Reference/
Setpoint Value at
t=30ss

• We started to Simulate a basic Model in Python
• Then we improved the Python Code by using Functions and Classes

in Python
• We Implemented also a basic Control System (just simulations, not

connection to a real process)
• Then, we tried to implement a “real-time control system”, where:

– We updated the Plot in every iteration
– The Control System runs “forever” until we stop the program with

“Ctrl-C”
– We changed the Reference/Setpoint value during execution, i.e.,

r=1, then we changed to r=2 after 30s.
=> These things are more complicated in Python compared to, e.g.,
LabVIEW or WinForm App in Visual Studio/C#, but it is possible.

Summary

Final Solution
Simulation
try:

while True:
t = t + Ts
if (t==30):

r = 2
u, e = control.Controller(yk, r, u_prev, e_prev)
u_prev = u
e_prev = e

yk1 = control.Model(yk, u)
yk = yk1
data.append(yk1)

Plot the Simulation Results
plt.figure(1)
plt.plot(t,yk1, '-o', markersize=1, color='blue')
plt.show()
plt.pause(Ts)

except KeyboardInterrupt:
pass

print("Program is Finished")

import matplotlib.pyplot as plt
from Automation import Automation

print("Press Ctrl-C to Stop the Program")

#Simulation Parameters
t = 0
yk = 0
uk = 1
Tstop = 30
Ts = 1
N = int(Tstop/Ts) # Simulation length
data = []
data.append(yk)

Controller Initialization
r = 1
Kp = 0.5
Ti = 5
u_prev = 0
e_prev = 0
control = Automation(Ts, Kp, Ti)

Initialize Plot
plt.figure(1)
plt.title('Control of 1.order Dynamic System')
plt.xlabel('t [s]')
plt.ylabel('y(t)')
plt.grid()

Final Solution
class Automation:

def __init__(self, Ts, Kp, Ti):
self.Ts = Ts
self.Kp = Kp
self.Ti = Ti

def Model(self, yk, uk):
Model Parameters
K = 3
T = 4
a = -1/T
b = K/T

Ts = self.Ts

#Model Implementation
yk1 = (1 + a*Ts) * yk + Ts*b*uk

return yk1

def Controller(self, y, r, u_prev, e_prev):
Kp = self.Kp
Ti = self.Ti
Ts = self.Ts

e = r - y
u = u_prev + Kp*(e - e_prev) + (Kp/Ti)*Ts*e

return u, e

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

